Below: This screen shot is an example of what you will see - except it will be in motion. NOTE: The site resets at noon every day, so the best time to check is afternoon.
Put your email address in the box below and "submit" to be notified when a new post is added.
Below: This screen shot is an example of what you will see - except it will be in motion. NOTE: The site resets at noon every day, so the best time to check is afternoon.
*If you expand the map to "full screen" you will need to get out of "full screen" to enter the diameter of the Sun.
Below: To see where the planets are right now, go to this website.
Like wind across water.
The waves form at the boundary between layers of air that have different densities and wind speeds (wind shear). Air in the layer above the cloud is moving faster than air in the layer containing the cloud. Development of waves on the cloudy layer is similar to what happens when waves form on the ocean as wind blows across the water. In the photo the wavy layer is more dense than the clear air flowing above it - just as water is more dense than air blowing over its surface.
Clouds provide a "visual".
The type of motion that causes the wave pattern is actually not that uncommon in the atmosphere, although we usually don't see it. In order for us to see it, clouds must be present in the lower layer (as they were when the photo was taken). We can't see clear air, but we can see clouds. One of the nice things about clouds is they provide clues about the type of motion currently happening in the atmosphere. Want to know more? - Watch the 4.5-minute video below, which includes a great demo.
Term for students to define: wind shear
1. Article - More about KH Clouds
2. Another good article about KH Clouds
1. Go to timeanddate.com and enter your location.
2. Read how to watch at theverge.com.
The video below is not specific to the eclipse of January 2019, but it does an nice job of explaining different aspects of lunar eclipses.
Thanks to Rick Dees for showing me this!
A Mountain Wave.
This photo was taken from the Helena High athletic fields, looking west toward the Continental Divide. It shows the classic Chinook arch that appeared on December 13, 2018. The clear area between the arch and the mountains exists because the air is down-sloping there. As air flows over the Rockies it may develop an up and down motion like water flowing over rocks in the rapids of a river. Although the air flows downward once it gets over the mountains, it may continue to oscillate up and down as it flows away from the mountains for several hundred miles. The upward flowing part of this "mountain wave" is what forms the long arch of clouds. (Click on the image to enlarge it or CLICK HERE to watch a 24-second video of the arch shown in the photo.)
Here's how it works.
As the air flows down-slope, it is warmed by compression. Then, as the wave action continues and the air begins to rise again, the air cools by expansion. If there is enough vapor in the air, the arch of clouds will form as vapor condenses to form cloud droplets (or cloud crystals). Typically, the long area of clouds will form near the crest (top) of the first wave and then get blown eastward by higher level winds. If the mountain wave continues, and another downward turn is taken, the arch (cloud) will evaporate farther downstream (east).
Same arch, different vantage point.
The G.O.E.S. East satellite image below shows what the same Chinook arch looked like from space at 9:47 am MST. It is called an "arch" because an observer standing below it sees a curved patch of clear sky between the band of clouds and the mountains below. In the satellite image, the Chinook arch is the distinct eastern edge of the bright white cloud that extends from north to south through western Montana.
Term to define: GOES East Satellite
Confused? - Check out this Great Falls Tribune article.